Using the quantitative approach of physicists, they learn that bacteria can quickly evolve to predict exactly when exposure to antibiotics will occur
By: Michael Lefkoe, NoCamels, on ShalomLife.com
It has been nearly nine decades since Sir Alexander Fleming’s accidental discovery of Penicillin at his Paddington laboratory in 1928, and today well over a hundred different types of antibiotics exist for numerous bacterial infections. A growing concern in modern medicine, however, is the ability of pathogenic bacteria to evolve strategies for overcoming antibiotic treatments. Many antibiotics such as ampicillin and erythromycin, for example, which used to kill off whole bacterial populations with great efficacy, are now capable of much less due to this alarming phenomenon of bacterial tolerance.
Researchers at Hebrew University in Jerusalem recently made an important discovery that advances our understanding of how bacteria are able to develop tolerance to antibiotics. Using the quantitative approach of physicists, they discovered that bacteria can quickly evolve to predict exactly when exposure to antibiotics will occur. As a result, the infectious bacteria will learn to lie dormant during the precise period of exposure, giving the population greater chance at survival.
To illustrate this striking phenomenon, consider a patient taking antibiotics on a fixed schedule for some bacterial infection he had the misfortune to develop. Perhaps his doctor told him to take the antibiotics three times a day for ten days, spacing each dosage throughout the day at equal intervals. As this study indicates, the bacteria population may evolve after just a few days to modify its dormancy period to coincide with the duration of antibiotic exposure. To be sure, in the dormant stage nothing is absorbed by the bacteria, not even those “powerful” antibiotics.
Continue reading.
Follow us on page.
No comments:
Post a Comment